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The Advanced Photon Source is a 7GeV 3™ generation
synchrotron source producing the brightest x-rays in the
US, now operating for 11 years




A scientific tour of the ring
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APS scientific impact increasing Selected high impact stats
2004 2005 2006

Cell 4 6 14

Refereed publications All Nature*™ 32 37 37

PRL 21 27 37
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The majority of our users are from academia
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and a significant fraction of their research support comes from NSF




Science possible by a highly performing machine

B Over the last three years the average availability has been > 98%
— And the mean time between faults (MTBF) has been over 90 hours
B These are outstanding metrics
— The result of many years of a sustained QA approach to faults
« Combined with a well-built machine!
B Our goal has become 97% availability and 70 hours MTBF
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B We are concerned that our resources have not been adequate to deal
with obsolescence, without which sustaining our goals will be a challenge




Some examples of machine innovation in last three years

a. Improved beam stability

Temp (deg F)

8553888355888 35883583
YHEEECSEEn B ANEESE

Time { 2 minute intervals)

pays off for a dedicated

b. Local beta functions imaging sector (32ID)

c. Single bunch charge increased by ~2 times to 16 mA

Laser X-ray detectors

L. Young et al., “X-Ray Microprobe of Orbital Alignment in
Strong-Field lonized Atoms,” Phys. Rev. Lett 97, 083601 (2006).

X-rays

Optical field strength

...driven by x-ray science

= 30-um laser focus
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Some medium-term accelerator innovations

B Short Pulse X-Ray Project — ps pulses on Sector 77?

.l‘ chopper
variable x-ray

=
Scattering - area
pulse length Mono laser Dispersive XAFS

B Responsibility as LCLS partner for
undulators in world's first x-ray laser

Argonne |



APS assume operations of more beamlines RIS OpBralIGAE ERE SEaarE NORY

] — APS run beamlines (as of end of '07)
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Increasingly optimized XOR beamlines - techniques at the APS — 2003 vs.
2009 (planned)
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New proposals which emerged from strategic planning
since 2004 (more than a dozen workshops held..)

1. Transition of several multi-purpose to dedicated APS beamlines:
» High-energy (E>50 keV) beamline: 1-1D ﬁ'
* Imaging beamline: 32-ID W
« Small/wide angle x-ray scattering: 12-ID-B

» Time-resolved picosecond scattering: 7-ID-C (NEW) W

2. Several groups formed partnerships to develop new beamlines:
HP-Sync - a virtual beamline for high-pressure studies f

* Intermediate X-ray Energy Spectroscopy and Scattering d

« BioNanoprobe £ ™

« Diffraction in High Field

others under development




Software and instrumentation

Software is a critical
“weak link” in g
accessibility to APS LT ekl
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Argonne Scattering &
Imaging Institute
(ASI) —_

Detector development
supported by ANL laboratory
Strategic LDRD in 2007

and ASI? would make this a national asset for x-ray
and neutron grand challenge science (follows on from
NSF funded DANSCE




Future growth areas

Biology outside protein crystallography

Magnetism

Inelastic x-ray scattering for Condensed Matter Physics, Geophyiscs,
Biophysics

Nanoscience

Intermediate energy x-ray scattering

Catalysis...

Tactics:

Increasingly dedicate beamlines

Create new beamlines, with user partners

Facilitate scientific portals, not necessarily beamline specific
Especially focus on imaging (broadly defined) and ultrafast science
Develop detectors, scientific software and theory

Plan for long-term machine upgrade to support new science




Status of Facilities for the Future: 20-Year Outlook — By the End of FY 2008
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APS science at the nanoscale (predominantly imaging or

focusing) will benefit from increase source brilliance
M
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Cornell University Energy Recovery Linac

Main Linac

Injector

@ Accelerating bunch

@ Returning bunch A superconducting LINAC is required
for high energy recovery efficiency

A
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An ERL would produce almost fully-coherent illumination
(transversely) => probing complex materials dynamics by x-ray
photon correlation spectroscopy (XPCS)

e.g. Photon correlation spectroscopy becomes 4 orders of magnitude

accessed

faster inferred | experi mentally

1.05

1.00 L 0 0l ) magg
log(t)

Courtesy B. Leheny, JHU

Glassy dynamics

100 ms

Dynamics of membranes

Better detectors will reach sub-us




What would an ERL offer?
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We continue to consider other
options, but are now targeted
on the ERL

B Substantially spatially-coherent
source (“like a laser”)

— It can put >100 times more flux
into a <10nm probe and improve
phase contrast compared with a
storage ring

— And deliver to many users

W |t offers pulses 100 times shorter or
less (in the sub-ps regime)
— Does not rival FEL for peak
brilliance

— But compatible with FEL
upgrade as well

B Natural upgrade path for storage ring
such as APS

— Could be done without
compromise or major disruption




R&D Hilite: Cavity laser might become possible with ERL beam
K.J. Kim and Y. Shvydko

Diamond cavity for the X-FEL Oscillator

100 m

a '
C(444) undulator C(444)
0.1° .
12 keV
W \' AR I R W W /T m xrays
NN NN NN
)d
R;=0.99 S Ry=0.952
mirror 9 cm T;=0.042

R, X Ry X Ry =091 T; ~ 0.042

u Oiptics for an FEL Oscillator with ERL Beams uri ko & Kwang-Je Kim July 27, 2007 foil 20,
pti ng-

Fully coherent (temporal and spatial) x-ray laser source!




Where are we now on upgrade planning? |
B Serious R&D is required for APS . y)g;/,gﬁ,g\%&
upgrade (esp. gun and RF) e DC g 99\ \\\-:3

B R&D proposal submitted to DOE
strengthens international effort

— Leveraged by ANL LDRD and
accelerator institute

B During R&D phase there istime - .
to consider all options

Shickfing

B Major workshop with users . BNLXE%“W J \
planned for October 20-21 2008 | \\

B Meanwhile, BESAC plans to N
evaluate user community needs \ N\
which will drive DOE-BES plans 3_,4‘ )

B Of equal priority to us is N

development of new and
dedicated beamlines,

. . Aobanced Photon Somre M 2line ﬂoiv;'pf? Commvitee
instrumentation, detectors and g ey ey
software to expand imaging and

ultrafast capabilities

ann®

Sam Krimky

.......




The big three
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High energies chosen for x-ray
brilliance and tunability based on insertion
devices of the time — machines pioneered high
heat-load optics, better insertion devices, top-
up etc. which made “3- % generation” possible




New ~3GeV “3 72 generation” sources are flourishing

Existing or planned x-ray synchrotron light sources




I believe that the future for the big three is secure even

with growing beamports at “3)2 generation” sources
nearby

B They will be uniquely suited for applications needing ~15keV or higher




The role played by NSF to date (seen from a large DOE
facility)

B Support of research program for users
Training of people — users and staff at large facilities

B Investment in instrumentation through the academic user community at
DOE facilities — stimulating partnerships between the facility and “super”
users, and improving capabilities for the general user

B Development of novel techniques at NSF facilities, later applied at DOE
facilities
B Facility construction and operation for 1st and 2"d generation sources
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NSF Facilities trained key APS employees

Dennis Mills
Scientific User Facilities
Deputy Associate Laboratory Director

"' X-ray Science S
Glenn Decker y Qun Shen

Accelerator Systems Division X-ray Science Division
Diagnostics X-ray Microscopy and Imaging
Group Leader Group Leader

Just a few of those from Cornell (and Wisconsin)




Lights, Camera, Electrons — an example of the role of NSF
facilities

Fastest movies ever made of
electron motion

Created by scattering x-rays off
water at CMC-CAT (APS) and
CHESS (initial results)

Movies show electrons sloshing in
water molecules

Each frame lasts 4 attoseconds
(quintillionths of a second)

Results could let researchers
"watch" chemical reactions even
faster than those viewable with
today's "ultrafast" pulsed lasers

d
"
I

courtesy of P. Abbamonte,
Brookhaven National Lab, University
of lllinois

Difficult experiment
was developed at
CHESS and then
brought to APS

Imaging Density Disturbances in Water With a 41.3-
attosecond Time Resolution

2. Abbamonte, K. D. Finkelstzin, M. D. Collins, and 5. M.
Gruner

Phys. Rewv. Lett. 92 237401

lissus of 11 June 2004)




The role of NSF facilities — developing new instruments
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NSF Direct Investment in APS Beamlines and Users

New inelastic x-ray scattering
beamline IXS (joint with DOE at

B We estimate that ~ $50M of capital Sector 30)
investment has been made by NSF in
instrumentation (beamlines) at the ﬁsmx clearly resolved excfmh
Advanced Photon Source alone modes in a 1D cuprate chain for
— Recent examples are ISX and IEX (just the firsttime e
funded) Comparison of MERIX and SPring-8
B Does not include operating funding to data with energy and polarization

tuned for optimal enhancement of
the 2 - 4 eV signal:

200

Collaborative Access Teams at the level of
$2-3M per year, and most likely much
larger research funding for academic users
of the facility

S

Intensity (cts/s)
S
- |
- []
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Short term challenge at APS — reduced operating hours driven
by essential maintenance needs and inadequate budget

B Allocation of resources to accelerator For 2006,7,8 we have allocated
and beamline improvements, repairs: only $12M capital and accelerator
improvements (4% ops)!

DOE-BES APS Operating Budget

Beam Stability
6%

Machine Upgrades

120.00—
OGPP
OAP

110.00 | Capital Equipment o
@ Operating

100.00—

90.00—

B Can no longer defer painting the
bridge

80.00

70.00

60.00
FY 2002 FY 2003 FY 2004 FY 2005 FY 2006 FY 2007 FY2008 FY2008
President's

Strategy will be to make
repairs with fewer staff and
so reduce operating hours (to
4000 in FY09 -20%!)




Conclusions

B APS is a flourishing source which is currently the largest in the western
hemisphere and growing

B Despite gloomy national budget picture, we have plans for the short-term,
medium-term and long-term including a major upgrade

B The Energy-Recovery LINAC, developed by Cornell and also planned by
KEK, seems the most promising upgrade path for APS

— R&D is ongoing
— Major user workshop planned for this fall

B NSF has played a key role in developing the synchrotron science
community, and continues to directly benefit DOE sources

— Especially education, technique and instrumentation development
— We hope that they NSF will play an important role in future




Extras




A short history of partner users at APS

B \When the APS was constructed only 4 sectors were
operated by the facility

B Most sectors were constructed and operated by independent teams,
Collaborative Access Teams (CATSs)

— The CATSs brought
‘ » Strong intellectual partnerships

* Leveraged construction funding
* Diverse ideas and approaches
* Versatile multipurpose beamlines

 Insecure operating funding &




The XOR (APS X-Ray Operations and Research) system

More beamtime available

B Offers funding stability to general users (> 50%)
0

B Dedicated beamlines

B Partnerships possible (for intellectual drivers)

=)

Today we have 31 sectors under construction or operating
17 are or will be operated by XOR
(of which 10 were former CATs, 3 are or were CDT’s™)
9 Protein Crystallography (CATS)
5 operating physical sciences CATs

CDT - Collaborative Development Team = CAT - operation
is our preferred mode of beamline development and construction

® Involves change!




On-axis brilliance tuning curves for existing undulators
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What is the fourth generation revolution in x-ray sources?
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*Full spatial coherence
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On-axis Brilliance Tuning Curves for Current APS Lattice vs.
ERL High-coherence Mode vs. LCLS vs. NSLS I
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